
distances from the nozzle, while Fig. 2 also shows o(y) calculated [5] for x = 40h. The dis- 
crepancies between theory and experimentare due to the calculations not incorporating the 
gradients in the averaged dielectric constant, inexact approximation for the kinetic-energy 
dissipation over the jet cross section, and the temperature-fluctuation dissipation, as well 
as the approximation involved in considering the jets similar. 

The schlieren method can be applied to the scattered electromagnetic-radiation pattern 
and optical-parameter distributions in a shear-type turbulent flow. The known distribution 
for the scattering indicatrix enables one to recover the density-fluctuation spectrum [5]. 
Under certain conditions, the method can also be used to examine turbulence in temperature, 
concentration, and other patterns directly related to the density fluctuations. 

NOTATION 

<I>, averaged radiation intensity; y(e-~') scattering indicatrix as a function of the 
cosine of the scattering angle 8; (~-e~) = cos 8; ~, surface of unit sphere; s, photographic 
sensitivity; At, exposure time; h, nozzle end thickness. 
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LAWS GOVERNING THE INTERNAL REGION OF A TURBULENT BOUNDARY LAYER 

V. V. Zyabrikov UDC 532.526 

A study was made of the effect of large positive pressure gradients on the dis- 
tribution of friction and the velocity profile in the viscous sublayer, transi- 
tional section, and core of the internal region of a turbulent boundary layer. 

The subdivision of an entire turbulent boundary layer into two regions - an internal 
region (the "wall" region) and an external region (the wake region) - is generally accepted 
in boundary layer theory [1-3] and reflects the fact, discovered by Clausius, that an exter- 
nal region where eddy viscosity can be assumed constant over the cross section exists a sub- 
stantial distance from the wall. Eddy viscosity in this region decreases with approach to- 
ward the external boundary of the boundary layer due to alteration. In contrast to the ex- 
ternal region, in the internal region the wall's effect on the size of the turbulent "eddies" 
causes eddy viscosity to decrease with decreasing distance to the wall. The flow character- 
istics in the internal region, with small-scale turbulence, depend only slightly on the his- 
tory of the flow and are determined by the distance to the wall, the pressure gradient, and 
other local parameters [I, 2, 4]. It is known that pressure obeys the "wall law" in the in- 
ternal region of turbulent boundary layers with small pressure gradients. This law, using 
dimensionless variables 

= - -  u ,  = - -  v ,  (i) 
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describes a single velocity profile with a linear section in the immediate vicinity of the 
wall and a logarithmic section at a certain distance from it [i, 2]. The profile is indepen- 
dent of the Reynolds number and the pressure gradient. Despite numerous studies, investiga- 
tors have yet to determine the effect of moderate and large pressure gradients on a turbulent 
boundary layer in sections close to separation. Researchers have recently published very im- 
portant results from direct measurements of a boundary layer with separation [4, 5] performed 
simultaneously by ~ot-wire and laser methods. These results are more accurate than data that 
has been published previously. The studies [4-6] represent valuable experimental material 
which made it possible to extend the approach proposed in [7] for study of the transitional 
section of a turbulent boundary layer to the case of a large pressure gradient. In contrast 
to [7], here we study the entire internal region, including the turbulent core. Under these 
conditions, the approximate binomial formula adopted in [7] for the shear stress distribution 
across the boundary layer - which ignores the effect of the inertial term - is no longer valid 
and is replaced by the more exact trinomial formula of Cowles [8] 

z ,  = 1 -I- P,~I, + g ,  .f u 2. d~l,. ( 2 ) 
0 

Here, %, = T/T w, p, = (U/0) (dp/dx)/v, 3 is the pressure gradient parameter. The parameter 
2 g, = v(dv,/dx)/v, "will be referred to as the convective acceleration parameter. As shown 

by simple calculations performed on the basis of experimental data on a gradientless boundary 
layer (dp/dx = 0) [I], an increase in the local Reynolds number R** from 103 to 106 is accom- 
panied by a reduction in the convective acceleration parameter g, from 10 -6 to i0 -s, i.e., 
this is a very small quantity. However, the integral next to g, in Eq. (2) increases sharply 
with an increase in D, (see the table in [8]), so that we can no longer ignore their product 
in the turbulent core. This also applies to the case dp/dx ~ 0. The experimental data in 
[9] confirm the need for such a refinement: even in the case of a gradientless boundary 
layer, the shear stress decreases by 10% at a distance from the wall corresponding to the 
thickness of the internal region. Thus, the assumption of a constant turbulent shear stress 
T = ~w is invalid. This assumption was the basis for derivation of the logarithmic velocity 
profile 

I 
u,  = ln~l, - k B , .  (3 )  

Nevertheless, the logarithmic law has been confirmed by numerous experiments [i0], not only 
for a plate, but also in the presence of a pressure gradient. The latter is possible only 
in the case when the pressure gradient, influencing the turbulent shear stress distribution 
[see Eq. (2)], also determines the distribution of the mixing length. These changes offset 
one another. As was shown in [ii], the logarithmic section is more conservative in regard to 
a change in the pressure gradient than is the linear formula for mixing length. The reten- 
tion of the slope of the logarithmic section of the velocity profile is reflected by Reeves' 

formula [12] ~ = • ~/v~7~w, the derivation of which was given in [7] with the difference that 
a binomial formula for �9 was used in the transitional section. It should be noted that, in 
the present study, the coefficient K, is a parameter of the logarithmic velocity profile (3), 
not a proportionality factor in the formula for the mixing length ~ = ~y. For a constant 
value of the coefficient ~ equal to 0.4, the authors of [13] confirmed the advantages of the 
Reeves formula compared to the linear formula for mixing length. By using the Reeves formula 
with a constant value of K in practical calculations, we essentially change over from thd hy- 
pothesis of conservation of mixing length to the hypothesis of conservation of the slope of 
the logarithmic velocity profile. The curvilinear character of the change in ~ corresponding 
to the Reeves formula was observed experimentally by E. M. Khabakhpashev and G. I. Efimenko 
[6] on the basis of very precise direct measurements of turbulent shear stress and experimen- 
tal determination of 8u/By in a boundary layer with a large positive pressure gradient. 

Logarithmic Section of the Velocity Profile. The authors of [14] were the first to pro- 
vide measurement data indicating a disruption of the conservativeness of the logarithmic sec- 
tion - of a contraction of the rectilinear segment of the logarithmic velocity profile at 
large positive pressure gradients. As was shown in [15], failure to allow for this contrac- 
tion and the use of a logarithmic segment with constant values of ~, and B, to determine cf 
(Clauser's method [i0]) lead to underestimation of this quantity by 30-40% compared to data 
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Fig. i. Dependence of the coefficients K,(a) and B, (b) of the 
logarithmic velocity profile on the pressure gradient parameter: 
i) by Eq. (4); 2) experimental data [4, 5]; 3) experimental data 

[ 6 ] .  

Fig. 2. Dependence of the critical local Reynolds number on the 
pressure gradient parameter. 

from direct measurements. The studies [6, 16] made a more detailed investigation of the phe- 
nomenon of contraction of the rectilinear part of the logarithmic profile under the influence 
of a pressure gradient. 

When the latest systematic measurements, taken within a broad range of the parameter p, 
[4, 5], are replotted in the coordinates corresponding to wall law (i), it is found that an 
increase in the pressure gradient parameter p, is accompanied not only by contraction of the 
rectilinear section of the logarithmic velocity profile (a decrease in B,), but also by a de- 
crease in the slope of this part relative to the x-axis (an increase in ~,). Using these ex- 
perimental findings together with experimental data from [6] to determine the functions <,(p,) 
and B,(p,), we arrive at the relations shown in Fig. I together with the approximating func- 
tions: 

=/~  (p, 0,006), /5, I (p, 0,006), 
~* [0,36 -]- 7,2 p, (p, ~ O,OO6), B, = [0,118(p, ~- 0,017)-~(p, >0 ,006) .  (4) 

The latter formulas combine the law of conservation of the logarithmic section at small pres- 
sure gradients - established in [17] by direct measurements of shear stress on the wall - and 
the law of conservation of the form of logarithmic relation [4-6]. The coefficients of the 
rectilinear segment of the logarithmic velocity profile change from the values K, = 0.4 and 
B, = 5.1 on the plate to 4-oo and 0 in the section corresponding to separation of the boundary 
layer. In this section, large-scale pulsative motion dominates the averaged motion and ex- 
tends the zero velocity of the average motion from a point in the immediate vicinity of the 
wall to a certain finite region which is on the order of 1% of the thickness of the boundary 
layer. Thus, not only does the length of the logarithmic section decrease with approach to- 
ward the separation section [i, 2, 12], but the logarithmic dependence of longitudinal veloc- 
ity on the transverse coordinate degenerates to an identically zero dependence. 

By introducing the Reeves formula into the theoretical model - but with a variable coef- 
ficient K, [Eq. (4)] - we should be able to significantly improve the agreement of the calcu- 
lated results with empirical data for large pressure gradients. It should be noted that, re- 
gardless of the quantity <,, use of the Reeves formula not only refines the formula for mixing 
length, but also entails a changeover from a direct method of calculation of the boundary 
layer to an inverse method - when a prescribed velocity profile is used to determine the shear 
stress distribution and mixing length. 

Transitional Section of a Turbulent Boundary Layer in the Presence of a Large Positive 
Pressure Gradient. In the previous article [7], we determined the dependence of the damping 
factor on the transverse coordinate and the pressure gradient parameter. Calculations were 
performed with the assumption of the existence of a unique logarithmic section and constant 
values of the coefficients K, and B, for different but small pressure gradients. Having re- 
peated the analysis of the transitional section in [7] for variable values of K.~ and B, with 
large pressure gradients, we find the function R.k(p, ) corresponding to these values (Fig. 2). 
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Fig. 3. Family of curves of the damping factor corresponding 
to different values of the pressure gradient parameter (i) p, = 
0, 2) 0.01, 3) 0.02, 4) 0.i) obtained by numerical calculation 
(solid lines) and from an approximate formula (dashed lines). 

Fig. 4. Structure of the velocity fields in the internal re- 
gion of a turbulent boundary layer in the coordinates of the 
wall law (a) and in physical coordinates (b): i) viscous sub- 
layer and transitional section; 2) logarithmic section [for ve- 
locity - Eqs. (3) and (4)]; 3) section corresponding to half- 
power law [for velocity - Eqs. (6) and (7)] and the intermediate 
region; 4) experimental data on the boundaries between regions 
[4, 5]; 5) experimental data on the boundaries between regions 
[6]. x, m. 

In a manner analogous to the classical longitudinal laminar-turbulent transition, the param- 
eters R,k - characterizing the ordinate of the point in the transitional section correspond- 
ing to the transition from viscous motion in the sublayer to turbulent motion in the core - 
decreases with an increase in the pressure gradient parameter p, and takes a zero value in the 
separation section. The latter means that the transition begins in the immediate vicinity of 
the wall but does not lead to disappearance of the viscous sublayer - the region where laminar 
viscosity is considerably greater than eddy viscosity. It is evident from Fig. 3 that the 
thickness of the transitional section decreases with an increase in the pressure gradient pa- 
rameter and vanishes in the separation section, where the damping factor D, is equal to unity 
over the entire section and total viscosity is obtained simply by superimposing (without 
interaction) laminar and eddy viscosities. The dashed lines in Fig. 3 show an approximation 
of the curves of D,(q~; p,) by the piecewise-smooth family D,a = 0.0008 x exp(50p~.) (1 + 
P,,,~ )2~u,2 (q, ~ q...~),"D,a . . . . .  = l(q, > no.0), where q...0 is the coordinate at which the~value of 
D,a becomes equal to unity. 

Structure of the Velocity Field in the Internal Region of the Turbulent Boundary Layer. 
At present, it is possible to completely understand the structure of the velocity field only 
in a nongradient boundary layer [i, 2]. Information on the change in this structure under 
the influence of a positive pressure gradient is extremely scarce and is only qualitative in 
character. Thus, in connection with the above-noted contraction of the straight section of 
the logarithmic profile, the authors of [4, 6, 14, 16] concluded that the thickness of the 
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viscous sublayer is decreased in the coordinates of wall law (i) compared to the nongradient 
case. It was indicated in [6, 12, 14, 16] that the size of the logarithmic section decreases 
sharply in the presence of a positive pressure gradient. Given this, the logarithmic law may 
be replaced by a half-power law [18]. In Stratford variables [7] 

~OS US VS --- 
~ls = - - -v- - '  Vs p dx . (5) 

the half-power law has the form 

2 -V,~ss __kBs" bl  S -~ -  - -  

• (6) 

An analysis of the experimental data in [4, 5] converted to the Stratford variables showed 
that, with a high degree of accuracy, the value of the coefficient K S turns out to be con- 
stant and equal to 0.6. Meanwhile, the coefficient B S decreases with approach toward the 
separation section in accordance with the linear formula 

B s = 3 , 8 ~ s - - 2 3 , 4 "  (7) 

Here, ~S = ( v / p ( d p / d x ) ) - 2 / 3 v *  2 i s  the  p r e s s u r e  g r a d i e n t  parameter  w r i t t e n  in S t r a t f o r d  v a r i -  
ab les  [7] .  F igure  4 shows the  e x p e r i m e n t a l l y  e s t a b l i s h e d  boundar ies  between c h a r a c t e r i s t i c  
sections of the internal region: the transitional section, the logarithmic section, and the 
half-power-law section [4-6]. It can be seen from the figure that an increase in the pres- 
sure gradient parameter p, is accompanied by a reduction in the total thickness of the vis- 
cous sublayer and the transitional section (as noted above, the thickness of the transitional 
section approaches zero going toward the separation section). We should point out that in 
the physical coordinates x and Y/~0.995, the configuration of the logarithmic section turns 
out to be wedge-shaped. The base of the wedge lies in the nongradient section, and there is 
a gradual contraction toward the separation section. 

Continuing the analysis of experimental velocity profiles, we note that at moderate pres- 
sure gradients (p,~ 0.01) the logarithmic profile smoothly joins the half-power profile. In 
the case Of large pressure gradients (p, ~ 0.I), these profiles can no longer be joined by 
the derivative 8u/By, and an intermediate region is formed. The size of this region gradually 
increases with approach toward the separation section. The presence of this region can be 
judged from the appearance of two inflection points on the velocity profile, separated by a 
convex downward section. This feature is readily apparent against the background of convex 
upward graphs of the logarithmic and half-power velocity distributions. The thickness of the 
region corresponding to the half-power law in the nongradient section is equal to zero. At 
small pressure gradients, it increases with an increase in the parameter p,. It then de- 
creases as it approaches the separation section, sothat the thickness of the entire internal 
region in this section is no greater than 5-7% of the thickness of the boundary layer. 

NOTATION 

x, y, longitudinal and transverse coordinates; u, longitudinal component of velocity; 
�9 , total shear stress; TW, total shear stress on the wall; p, density; p, pressure; ~, vis- 
cosity coefficient; v,, absolute viscosity; q, dimensionless transverse coordinate; p,, ~S, 
pressure gradient parameters in the coordinates of the power law and the Stratford coordi- 
nates; g, parameter of convective acceleration; K,, B,, coefficients of the logarithmic veloc- 
ity law; KS, BS, coefficients of the half-power law; K, proportionality factor in the formula 
for mixing length; cf, friction coefficient on the wall; R,k, critical local Reynolds number; 
D,, damping factor; ~0.995, thickness of the boundary layer, i.e., distance from the wall to 
the point where the longitudinal component of velocity differs 0.5% from the velocity on the 
external boundary of the boundary layer; D,a, coordinates of the point at which the damping 
factor D,a becomes equal to unity; Xsep, coordinate of the boundary-layer separation point. 
The subscript * denotes variables of the wall law; S denotes Stratford variables (see [7]). 

i. 
2. 
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CALCULATION OF THE CHARACTERISTICS OF COUNTERCURRENT AXISYMMETRIC JETS 

V. A. Dvoinishnikov, M. A. Laryushkin, 
and A. N. Rozhko 

UDC 532.517.4 

On the basis of analysis and generalization of experimental data, a method is 
proposed for calculating the parameters of the interaction of two coaxial jets 
flowing in opposite directions from circular nozzles of different diameters. 

The operation of many types of equipment (boilers and dryers, high-pressure combustion 
chambers, etc.) is based on the interaction of countercurrent jets. In light of this, know- 
ledge of the general laws governing their propagation acquires particular importance. 

The literature data [1-3] shows that the propagation of a jet in an infinite opposing 
flow has been studied the most intensively, while there are almost no generalizing relations 
which describe the interaction of jets of finite dimensions. 

We will examine the case of the coaxial interaction of two axisymmetric jets flowing in 
opposite directions from circular nozzles. The experiments were conducted on a unit with a 
fixed distance between the nozzles Lax = 320 mm. The diameter of the large nozzle D was left 
constant and equal to 80 mm. The diameter of the small nozzle d was varied from i0 to 30 mm. 
Air was delivered to the system by a separate blower. The ratio of the impulses of the air 
jets q = pu2/Os163 2 in the experiment was 0.2-4, which corresponded to a change in the Rey- 
nolds number Res = (4-2.5)-i0 s for the large jet and Re = (2-10)'104 for the small jet. 
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